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Abstract - This paper discusses the design of Direct Digi- 
tal Frequency Synthesizers (DDFS) based IJII the linear 
interpolation of the sine function. The problem of approxi- 
mating the sine function within a desired error bound is 
specitically considered. The use of linear segments is favor- 
able for hardware implementation because of the low 
processing complexity requirements. A relation between the 
minimum number of Linear segments, the resolution with 
which segment slopes arc expressed, and the achievable pre- 
cision is derived. Tradeoffs between memory storage 
requirements and computational complexity are identitied, 
and architectural and implementation issues arc discussed. 
Example designs achieving 8, 10 and 12 bits of amplitude 
resolution with S9,ll and 86 dBc of Spurious Free Dynamic 
Range (SFDR) are presented. 

I. INTRODUCTlON 

The flexibility and performance characteristics of Di- 
rect Digital Frequency Synthesis (DDFS) make this kind 
of synthesizer very attractwe for reconfigurable commu- 
nications equipment and software radio applications. The 
combination of excellent frequency resolution and high 
frequency switching rates differentiate DDFS from other 
synthesizers based on phase locked loops. DDFS has been 
well described in the literature [I]: 

The basic DDFS architecture includes a phase accumu- 
lator and a Phase to Sinusoid Amplitude Converter 
(PSAC). The output frequency is given by: 

f,“, =foGy (1) 

where fa is the frequency of the clock reference, FCW is 
the frequency control word, and N is the width of the 
phase accumulator. 

The frequency resolution of the synthesizer is given by 
the ratio of the clock reference to the number of states of 
the phase accumulator. Hence, a large N is &en selected, 
at the expense of a potential exponential increase in the 
PSAC complexity. For this reason, only M most signifi- 
cant phase accumulator bits are retamed. The quadrant 
symmetry of the sine function is also normally exploited 

to reduce the PSAC complexity by more than a factor of 
four. The resulting architecture is shown in Fig. I. 

Fig. I Single phase DDFS with phase truncation and quad- 
“lnt symmetry. 

Several approaches have been proposed for the design 
of the PSAC, including using a ROM Look-Up Table 
(LUT), angular decomposition, sine amplitude compres- 
sion, CORDIC and other angular rotation algorithms, and 
polynomial approximations [I]. All of these methods 
make a trade-off behveen computational complexity and 
memory storage. In most cases, the goal is to achieve a 
high Spurious Free Dynamic Range (SFDR) and a high 
maximum clock rate, while minimizing silicon area and 
power consumption. The SFDR is defined as the ratio of 
the power of the greatest undesired frequency spur to the 
power of the desired output frequency. 

In this paper, we consider PSACs based on a first order 
polynomial approximation, i.e. making a linear mterpola- 
tion of the sine function. This approach presents 
interesting hardware implementation advantages since 
computational complexity is limited to a single multipli- 
cation and an addition. 

The paper is divided into 6 sections including this in- 
troduction. In section II, we review linear interpolation 
PSAC for DDFS. Section III discusses the problem of the 
linear mterpolation of the sine function. System imple- 
mentation issues are presented in section IV, and design 
examples are given in V. Conclusions are found in sec- 
tion VI. 
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II. LINEAR INTERPOLATION PSAC FOR DDFS 

To the best of our knowledge, Freeman [2] was the first 
to use a linear interpolation technique in DDFS. Be et&c- 
tively used 16 piecewise continuous linear segments to 
approximate the first quadrant of the sine function. Seg- 
ment slopes and initial amplitudes were stored in two 
small ROMs, and a third ROM stored correction values. 
Multipliers and adders completed the architecture. Bel- 
laouar et al. [3] used a I” degree Taylor series expansion 
in 32 equal length segments, adding the capability of gen- 
erating quadrature sinusoids. Liu et al. [4] decomposed 
the first quadrant of the sine function with linear seg- 
ments of unequal lengths, whose number, slopes and y- 
intercepts were carefully selected to achieve a desired 
precision in the sine amplitude estimate. The work by 
Curtic~pean et al. [5] can be seen as a combination of 
angular decomposition and linear interpolation, It features 
high SFDR, reduced ROM size, reasonable computational 
costs and reduced power consumption. El Said and El- 
masry 161 improved on Bellaouar et al.% work by shifting 
the interpolation point of the Taylor series expansion to 
the center of each interval. The result is a decrease in the 
required ROM storage at a slight increase in computa- 
tional complexity. 

As shown in Fig. 1, the role of the PSAC is to calculate 
an approximation of the sine function for first quadrant 
angles. Let x represent a scaled phase angle in the interval 
[0, l[, then the output ofthe PSAC is given by 

f(x) = Ash(~)-&(x) 0 5 x < 1 (2) 

where A is some amplitude equal to or less than I, and E 
is the approximation error. The approximated sine ampli- 
tude in the first quadrant is expressed with L bits, giving a 
synthesizer output of (L + I) bits. The amplitude factor A 
should be selected to maximize the synthesizer output 
amplitude without clipping. A reasonable choice is given 
by(2L-l)/2‘. 

For a linear interpolation DDFS, the PSAC implements 
equation (2) as follows: 

’ y, fm,(x--*,I x0 sx<x, (x, = 0) 
y, +m,(x-x,) x, cx<x, 

-y (3) +m (x-x) k I 1 x* sxcx,,, 

Y,-,+m,-,(x-x,.,) x,:, ix<x, (x, = 1) 
where s is the number of segments, mx and y, are a seg- 
ment’s slope and initial amplitude, respectively, and xx is 
a segment’s lower bound. 

The selection of the number and length of the linear 
segments can greatly simplify the implementation of 
equation (3). Ifs is chosen to be a power of two, the logrs 
most significant bits of x give the segment number, k, and 

can directly address the LUTs storing the slopes and ini- 
tial amplitudes. If the segments are equal in length, then 
the least significant W - logrs bits of x give the result of 
the (x -xx), and the segment bounds xI; are equal to k / s. 
Furthermore, the length of each segment is equal to 1 / s. 

The general architecture of a PSAC using linear inter- 
polation and implementing these hardware optimizations 
is shown in Fig. 2. The scaled phase angle x is expressed 
with W = M- 2 fractional bits and the output is expressed 
with L fractional bits. 

segment 
Selection 

I Is words)- ” c 

Fig. 2 Linear interpolation PSAC general architecture 

From Fig. 2, it can be seen that the implementation of 
the PSAC with a linear interpolation architecture has a 
very low computational complexity, when compared with 
other methods, since a single multiplication and an addi- 
tion are required. 

III. LI?JEAR INTERPOLATION OF THE SINE FUNCTION 

A. Error Analysis 

In order to achieve the equivalent ofR bits ofamplitude 
resolution, the absolute value of the error le(x)l in (2) must 
be less than KLSB, or 2-! From equations (2) and (3), 
the interpolation error in segment k is given by 

&(x)=Asin(~)-(m,(x-x,)+y,) 3 2 x < xk+I (4) 

The point xb where the error signal E(X) is greatest can be 
found by equating the first derivative of (4) to 0: 

Depending on the value of mL, there are two possible 
cases, shown in Fig. 3. For case a., X~ lies inside segment 
k’s bounds, and for case b. it doesn’t. In the figure, the 
symbols EEL. Ed, and EW, represent the error at the letl 
bound, at the peak, and at the right bound of segment k: 

E~=E(x~)=A~~~(~)-(m,(x,-x,)+y,) 

Elp =E(XB)=Asin(~)-(m,(+c-x,)+y,) (6) 

8, = E(.Q+, ) = A sin(- m~w,(~,*, -x,)+Y,) 
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Fig. 3 a. Peak error lies inside segment bounds. 
b. Peak error lies outside segment bounds. 

B. Selection of Segment Co@cienls 

In order to minimize the absolute value of the error 
le(x)l inside a segment, that segment’s initial amplitude J$ 
must be selected so that the error signal E(X) is distributed 
evenly about the x axis. In case a., we should have: 

IP(x)~~~ =c+ = -min(E,&), (7) 
and in case b. we should have: 

IHx)l, =I&YI=I%I. (8) 
Given a segment’s width XL+~ - xk and an amplitude A, 

the minimum maximum error l&(x)\- on this segment 
will be attained for a specific situation in case a., i.e. E& = 
cWI. From (6), the corresponding segment slope mkop, is: 

A 
mbpapr =- sin( 

( 
!F$i)-sin(?) 

1 
(9) 

Z&I -XI 
From these observatiks, the following coeficient se- 

lection algorithm therefore emerges once design 
parameters s, R, E, and C have been selected. For each 
segment: 
I. calculate the value of mkopf using (9); 
2. obtain IQ by rounding mXopt to E bits; 
3. find the corresponding value ofx@ from (5); 
4. calculate yu according to one of the following equa- 
tions: 

Asin(m,(x,,, -x,)+Asin(?) (IO) 

if case b. occurs, i.e. xxp <XL or xxp > &+I; or, 

Asin(m,(x,, -x,)+Asin(F) 
I 

(11) 

if case a.\occurs and if rnx < mkap, (and hence e& > ELL); 
a*, 

y, =i(Asin(F)-m,(x, -xr)) 

(12) 

if case a. occurs and if nz~ > I?+,~, (and hence EW( <EL). 
5. round yk to C bits; 
6. calculate the maximum amplitude error Ie(x) ac- 
cording to (7) or(S), depending on the case. 

C. Achievable Resolution Given s and E 

The procedure described in the previous subsection can 
be followed to find the global maximum amplitude error 
for all segments. This was repeated for various values of 
the number of segments s and the number of bits E with 
which the slopes mx are expressed. The results are shown 
in Fig. 4. 

Fig. 4 Output resolution given s and E 

From Fig. 4, it can be seen that there is a bound for 
which it is not possible to achieve a desired output resolu- 
tion given a number of segments, regardless of the 
precision with which the rnt are expressed. It can also be 
seen that there is a linear relationship, passed a certain 
point, between the output resolution, the value of E, and 
the log in base 2 of the number of segments used. For 
example, to achieve 8 bits of amplitude resolution with 8 
segments, at least 5 bits must be used to quantize the mx. 
Achieving 12 bits of resolution with no more than 2 bits 
for the segment slopes requires at least 5 12 segments. 
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It must be noted that Fie. 4 eives the worst case re- 
qurements for all segments in a set. In actual fact, the 
resolution for some specific segments will be much 
greater. Some segments may thus be combined to reduce 
memory storage requirements. It must also be noted that 
Fig. 4 assumes a infinite value of C to remove the effect 
of the quantization of the yk. 

IV. IMPLEMENTATION 1SSUES 

Fig. 4 outlines the fact that a tradeoff can be made be- 
tween the number of linear segments used and the 
resolution with which the segment slopes are expressed. 
Considering Fig. 2, it is obvious that both these parame- 
ters will affect the complexity of the multiplier and the 
total storage requirements. 

Total storage in bits is given by s x (C + E). The com- 
plexity of the row decoders in LUTs is directly 
proportional to the number of rows, and hence this prod- 
uct is a good indicator of total storage cost. 

The complexity of the multiplier :an be approximated 
as the product of the length of its operands, in this case 
(Cy - logls) x E. Hence,‘choosing a large s is favorable, 
since it reduces the minimum value of E required, and it 
also reduces the width of the operand (x -xx). 

The size of the multiplier also affects the maximum 
clock rate of the systeni If it is very large, pipelining reg- 
isters may be required and they may significantly affect 
the total system complexity. 

A tradeoff must therefore be made between the values 
of s and E, and it must be based on a comparison of the 
relative costs of implementing the multiplication opera- 
tion and the storage cost per bit. 

Using the procedure described above, a simple design 
with s = 8 segments achieving 8 bits of resolution was 
produced. Its coefficients are given in Table 1 below. 
With a phase resolution A4 = 11 bits, this design achieves 
an SFDR of -59 dBc. For this design, the other parame- 
ters are L = 9, E = 5 and C = 9. Total storage is therefore 
equal to 112 hits. The multiplier size is 6 x 5. 

A second design was produced. It achieves 10 bits of 
amplitude resolution with s = 32 segments. The other 
parameters are L = 12, E = 5, and C = 10. The SFDR is 
-76.1 dBc for a phase resolution of M = 14 bits. Total 
storage is equal to 480 bits. The multiplier size is 7 x 5. 

A third design achieving 12 bits of resolution and 86 
dBc of SFDR for a phase resoldtion of M = 16 bits was 
also considered. It uses s = 64 segments. System parame- 
ters are L = 14, E = 6 and C = 12. Total storage is equal to 
1152 bits, and the multiplier size is 8 x 6. 

TABLE I 
SIMPLE DESIGN EXAMPLE 

VI. CONCLUSION 

In this paper, we have discussed the design of Direct 
Digital Frequency Synthesizers (DDFS) based on the lin- 
ear interpolation of the sine function. The problem of 
approximating the sine function within a desired error 
bound was specifically considered. The use of linear 
segments was shown to he favorable for hardware im- 
plementation because of the low processmg complexity 
requirements. A relation between the minimum number 
of linear segments, the resolution with which segment 
slopes are expressed, and the achievable precision was 
dewed. Tradeoffs between memory storage requirements 
and computational complexity were identified, and archi- 
tectural and implementation issues were discussed. Three 
example designs achieving 8, 10 and 12 bits of amplitude 
resolution were presented. 
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